

Mark Scheme (Results)

January 2017

International GCSE Mathematics A 4MA0/3HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017 Publications Code 4MA0_3HR_1701_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
 - o M marks: method marks
 - o A marks: accuracy marks
 - B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- o ft follow through
- o isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- eeoo each error or omission

No working

WWW. MYMathscloud.com If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eq. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths January 2017 – Paper 3HR Mark scheme

www.mymathscloud.com Apart from Questions 11a, 15, 16a where the mark scheme states otherwise, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method.

Q	Working	Answer	Mark	Notes
1	$100^2 \mathrm{or} 10000$			M1 e.g. 12×100^2
		120 000	2	A1
				Total 2 marks

2	$360 \div 18$ or $\frac{(2n-4)90}{n} = 162$ or $\frac{(n-2)180}{n} = 162$			M1
		20	2	A1
				Total 2 marks

3	$\left(\frac{4+8}{2},\frac{11+3}{2}\right)$			M1 for $\frac{4+8}{2}$ or $\frac{11+3}{2}$ oe or (6, y) or (x, 7) or (7, 6)
		(6,7)	2	A1
				Total 2 marks

					www.my	UM ARIUS CIOLUCION
4	$15 \div 60 (=0.25) \text{ or } 13.25 \text{ or } 13 \times 60 + 15 (=795) \text{ or}$ $13 \times 3600 + 15 \times 60 (=47700)$			M1		- UU.COM
	8740 ÷ "13.25" or 8740 ÷ "795" × 60 or 8740 ÷ "47700" × 3600			M1	accept 8740 ÷ 13.15 or an answer of 664 - 665	
		660	3	A1	accept 659.6 – 660	-
					Total 3 marks	,

5	$80 \div (3+1) (=20)$ or 20 or 60		5	M1	
	0.15 × (3 × "20") (=9)			M1	M1 for $0.85 \times (3 \times "20") = 51$
	"20" ÷ 5 (=4)			M1	M1 for $\frac{4}{5} \times \text{``20''} (=16)$
	80 - "9" - "4"			M1	M1 for "16" + "51"
		67		A1	
	or				
5	$\frac{3}{4} \times \frac{15}{100} (= \frac{9}{80} \text{ or } 0.1125)$		5	M1	M1 $\frac{3}{4} \times \frac{85}{100} (= \frac{51}{80} \text{ or } 0.6375)$
	$\frac{1}{4} \times \frac{1}{5} (= \frac{1}{20} \text{ or } 0.05)$			M1	M1 $\frac{1}{4} \times \frac{4}{5} (= \frac{1}{5} \text{ or } 0.2)$
	$\frac{9}{80} + \frac{1}{20} \left(= \frac{13}{80} \right) $ or "0.1125" + "0.05" (=0.1625)			M1	M1 $\frac{51}{80} + \frac{1}{5}$
	$(1 - \frac{13}{80}) \times 80$ or $(1 - 0.1625) \times 80$ or $\frac{67}{80}$			M1	M1 $(\frac{51}{80} + \frac{1}{5}) \times 80$ oe or $\frac{67}{80}$
		67		A1	
					Total 5 marks

			WWW. TRYMSHISCIOLUCION
6 a	Reflection in $y = -1$	2	B1for reflectionB1for $y = -1$
			NB. If more than one transformation then award no marks
b	Vertices at (-2, 1) (-2, 6) (-5, 1) (-5, 3)	2	B2 If not B2 then award B1 for a correct transformation 90° clockwise about (0, 0) or 3 vertices correct or correct shape in correct orientation but in wrong position
			Total 4 marks

					For a correct line between $x = -2$ and $x = 4$	My Marins
7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	y = 6 - 2x drawn from $x = -2 to$ $x = 4$	4	B4	For a correct line between $x = -2$ and $x = 4$	td.Con.
				B3	For a correct straight line segment through at least 3 of (-2, 10) (-1, 8) (0, 6) (1, 4) (2, 2) (3, 0) (4,-2) OR for all of (-2, 10) (-1, 8) (0, 6) (1, 4) (2, 2) (3, 0) (4, -2) plotted but not joined	
				B2	For at least 2 correct points plotted	
				B1	For at least 2 correct points stated (may be in a table) OR for a line drawn with a negative gradient through (0, 6) OR a line with gradient -2 Total 4 marks	
					Total 4 marks	

					www.m	MN AISE
8	a	224 ÷ 8 oe	20	2	M1	7
			28		A1	_
	b	$523 - 411 (=112) \text{ or} \frac{523}{411} (=1.273) \text{ or } \frac{523}{411} \times 100 (=127.3)$		3	M1	
		$\frac{"112"}{411} \times 100 \text{ or } 100 \times "1.273" - 100$ or "127.3" - 100			M1 dep	
			27.3		A1 27.25 – 27.3	· -
					Total 5 marks	\$

9	а		$100 < w \le 110$	1	B1
	b	$85 \times 3 + 95 \times 5 + 105 \times 7 + 115 \times 4 + 125$ $255 + 475 + 735 + 460 + 125$		3	M2 for frequency × mid-interval for at least 4 products multiplied consistently and
		233 + 473 + 733 + 400 + 123			summing If not M2 then award M1 for multiplying
					consistently by value within intervals for at least 4 products (eg. end of interval) and
					summing products or mid-intervals used
					but not summed.
			2050		A1 SC : B2 for an answer of 102.5
					Total 4 marks

					mm m
					nymaths
10	$18^2 - (14 \div 2)^2 (=275)$		4	M1	or M1 for $\cos x = \frac{7}{18}$ or $\sin y = \frac{7}{18}$
					or $\cos z = \frac{18^2 + 18^2 - 14^2}{2 \times 18 \times 18}$
	$\sqrt{18^2 - (14 \div 2)^2}$ or $\sqrt{275}$ or $5\sqrt{11}$ or 16.5 or 16.6			M1	or M1 for $x = \cos^{-1}\left(\frac{7}{18}\right)$ or $x = 67.1$
					or $y = \sin^{-1}\left(\frac{7}{18}\right)$ or $y = 22.8$
					or $z = \cos^{-1}\left(\frac{18^2 + 18^2 - 14^2}{2 \times 18 \times 18}\right)$ or $z = 45.77$
	$0.5 \times 14 \times $ "16.5…" or $35\sqrt{11}$			M1	or M1 for 0.5×14×18×sin("67.1") or 0.5×18×18×sin(2×"22.8") or 0.5×18×18×sin("45.77")
		116			16 - 116.1 B Allow use of Hero's formula
			1	1	Total 4 marks
	Alternative scheme		1	1	
	25(25-18)(25-18)(25-14)(=13475) oe		4	M2	
	√13475 oe	1		M1	
		116	_	A1	
		1			Total 4 marks

IIae.g. $12x = 36$ or $24y = -60$ MIfor addition of given equations or a complete method to eliminate y or x (condone one arithmetic error)ae.g. $7 \times "3" + 2y = 16$ or $7x + 2 \times -2.5 = 16$ $x = 3$ oe, $y =$ -2.5 MIfor addition of given equations or a complete method to eliminate y or x (condone one arithmetic error)b $k^2 + 9k - 5k - 45$ AIdep on MI for both values correct. NB. Candidates showing no working score zeroceg $\left(\frac{1}{8x^4y^1}\right)^{\frac{1}{3}}$ or $\left(\frac{8x^6y^8}{y^3}\right)^{\frac{1}{3}}$ or $\left(\frac{y}{y^2}, \frac{x}{y^3}, \frac{y}{y^3}\right)^{\frac{1}{3}}$ or $\left(\frac{y}{y^2}, \frac{x}{y^3}, \frac{y}{y^3}\right)^{\frac{1}{3}}$ or eg $\left(8x^6y^3)^{\frac{1}{3}}$ or $\left(\frac{1}{8^{\frac{1}{3}}x^{-2}y^{-1}}\right)$ or eg $\left(\frac{2x^3y^8}{y^3}\right)^{\frac{1}{3}}$ or $\left(\frac{2x^3y^8}{y^3}\right)^{\frac{1}{3}}$ or $\left(\frac{2x^3y^8}{y^3}\right)^{\frac{1}{3}}$ or $\left(\frac{2x^3y^8}{y^3}\right)^{\frac{1}{3}}$ or $\left(\frac{2x^3y^8}{x^3}\right)^{\frac{1}{3}}$ or $2x^2y$ 3NB: do not accept decimal powers unless recurring dot is shownMIoeany one of correct simplification of y term or reciprocal or cube root of at least all variablesMIoe any two of cube root of at least all variablesMIoea.g. $(x^6y^3)^{\frac{1}{3}}$ or $(x^2y^3)^{\frac{1}{3}}$ or $(x^2y^2)^{\frac{1}{3}}$ or $(x^2y^2)^{\frac$						www.mymathsciencefor addition of given equations or a complete method toeliminate y or x (condone one arithmetic error)
$\frac{\left(2g_{1}^{2}x^{2}y^{2}-166\right)^{2}}{7x+2\times-2.5=16}$ $x=3 \text{ oe, } y=$ $\frac{-2.5}{-2.5}$ $\frac{A1}{A1} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } M1 \text{ for both values correct.} \\ NB. Candidates showing no working score zero$ $\frac{A1}{B} dep \text{ on } A1 \text{ terms correct ignoring signs or } y^{2} + 4k + 45$ $\frac{A1}{B} dep \text{ on } Cacept \text{ decimal powers unless recurring dot is shown}$ $M10e any one \text{ of } correct simplification of y term or reciprocal or cube root of at least all variables$ $\frac{(2x^{2}y^{\frac{3}{2}})}{(y^{\frac{3}{2}})^{\frac{3}{2}}} \text{ oe } 2x^{2}y$ $\frac{A1}{B} e.g. \left(\frac{y}{0.5x^{2}}\right) \text{ SCB2 for } \left(\frac{1}{2x^{2}y}\right) \text{ or } ax^{n}y^{m} \text{ with 2 of } a = 2, n = 1$	11 a	e.g. $12x = 36$ or $24y = -60$		3	M1	for addition of given equations or a complete method to eliminate <i>y</i> or <i>x</i> (condone one arithmetic error)
x = 3 oe, y = -2.5A1 dep on M1 for both values correct. NB. Candidates showing no working score zerob $k^2 + 9k - 5k - 45$ 2M1 $k^2 + 4k - 45$ for 3 terms correct or all 4 terms correct ignoring signs or $y^2 + 4k +$ or $+ 4k - 45$ ceg $\left(\frac{1}{8x^6y^3}\right)^{-\frac{1}{3}}$ or $\left(\frac{8x^6y^8}{y^5}\right)^{\frac{1}{3}}$ or $\left(\frac{y^{-\frac{3}{3}}}{0.5x^{-2}y^{-\frac{3}{3}}}\right)$ oe3NB: do not accept decimal powers unless recurring dot is shown $\left(\frac{y^{-\frac{3}{3}}}{0.5x^{-2}y^{-\frac{3}{3}}}\right)$ oe00M1oe any one of correct simplification of y term or reciprocal or cube root of at least all variables $\left(\frac{2x^2y^{\frac{5}{3}}}{y^{\frac{3}{3}}}\right)$ oe0M1oe $2x^2y$ M1oe any two of correct simplification of y term or reciprocal or cube root of at least all variables $\left(\frac{2x^2y^{\frac{5}{3}}}{y^{\frac{3}{3}}}\right)$ oe $2x^2y$ A1oe $a = 2, n = 1$ e.g. $\left(\frac{y}{0.5x^{-2}}\right)$ SCB2 for $\left(\frac{1}{2x^2y}\right)$ or ax^ny^n with 2 of $a = 2, n = 2, m = 1$			-		M1	(dep) for method to find second variable
b $\frac{k^{2}+9k-5k-45}{k^{2}+4k-45}$ 2 $\frac{M1}{\text{for 3 terms correct or all 4 terms correct ignoring signs or } y^{2}+4k\text{ or }+4k-45}{A1}$ c $eg\left(\frac{1}{8x^{6}y^{3}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{8x^{6}y^{8}}{y^{5}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{8x^{5}y^{-2}y^{-1}}\right)^{\frac{1}{3}} \text{ oe } \left(\frac{1}{8x^{5}y^{-2}y^{-1}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{3}{3}}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{8x^{5}y^{-2}y^{-1}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{3}{3}}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{3}{3}}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{8x^{5}y^{-2}y^{-1}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{3}{3}}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{8x^{5}y^{-2}y^{-1}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{3}{3}}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{3}{3}}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{8x^{5}y^{-2}y^{-1}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{3}{3}}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{3}{3}}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{8x^{5}y^{-2}y^{-1}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{2x^{2}y}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{2x^{2}y^{-1}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{2x^{2}y^{-1}}\right)^{\frac$			-		A1	-
$\frac{c}{eg\left(\frac{1}{8x^{6}y^{3}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{8x^{6}y^{8}}{y^{5}}\right)^{\frac{1}{3}} \text{ or } \left(\frac{1}{8x^{6}y^{3}}\right)^{\frac{1}{3}} \text$	b	$k^2 + 9k - 5k - 45$		2		for 3 terms correct or all 4 terms correct ignoring signs or
$eg\left(\frac{1}{8x^{6}y^{3}}\right)^{3} \text{ or } \left(\frac{8x^{6}y^{8}}{y^{5}}\right)^{3} \text{ or } \left(\frac{1}{8x^{6}y^{3}}\right)^{3} \text{ or } \left(\frac{1}{8x^{6}y^{3}}\right)^{3} \text{ or } \left(\frac{1}{8x^{6}y^{3}}\right)^{\frac{1}{3}} \frac{1}{9} \left(\frac{1}{8x^{6}y^{3}}\right)^$			$k^2 + 4k - 45$		A1	
$ \begin{pmatrix} \frac{y^{-5}}{0.5x^{-2}y^{-8}} \\ 0.5x^{-2}y^{-8} \\ \frac{y^{-5}}{3} \end{pmatrix} oe $ $ \frac{eg (8x^{6}y^{3})^{\frac{1}{3}} or \left(\frac{1}{8^{-\frac{1}{3}}x^{-2}y^{-1}}\right) or $ $ \frac{\left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{5}{3}}}\right) oe $ $ \frac{\left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{5}{3}}}\right) oe $ $ 2x^{2}y $ $ \frac{A1oe}{e.g. \left(\frac{y}{0.5x^{-2}}\right) SCB2 \text{ for } \left(\frac{1}{2x^{2}y}\right) \text{ or } ax^{n}y^{m} \text{ with 2 of } a = 2, n = 1$	С	$\boxed{\operatorname{eg}\left(\frac{1}{8x^{6}y^{3}}\right)^{-\frac{1}{3}} \operatorname{or}\left(\frac{8x^{6}y^{8}}{y^{5}}\right)^{\frac{1}{3}} \operatorname{or}}$		3		1 1 0
$\frac{\left[eg\left(8x^{6}y^{3}\right)^{\frac{1}{3}}\mathbf{or}\left(\frac{1}{8^{\frac{-1}{3}}x^{-2}y^{-1}}\right)\mathbf{or}\right]}{\left[\left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{5}{3}}}\right)\mathbf{oe}\right]}$ $\frac{\left[\left(\frac{2x^{2}y^{\frac{8}{3}}}{y^{\frac{5}{3}}}\right)\mathbf{oe}\right]}{2x^{2}y}$ $\frac{A10e}{e.g.\left(\frac{y}{0.5x^{-2}}\right)}$ $SCB2 \text{ for } \left(\frac{1}{2x^{2}y}\right) \text{ or } ax^{n}y^{m} \text{ with 2 of } a = 2, n = 2, m = 1$		$\left(\frac{y^{\frac{-5}{3}}}{y^{\frac{-8}{3}}}\right) oe$			M10e	correct simplification of y term or reciprocal or
$2x^{2}y$ Aloe e.g. $\left(\frac{y}{0.5x^{-2}}\right)$ SCB2 for $\left(\frac{1}{2x^{2}y}\right)$ or $ax^{n}y^{m}$ with 2 of $a = 2, n = 2, m = 1$		eg $(8x^6y^3)^{\frac{1}{3}}$ or $\left(\frac{1}{8^{\frac{-1}{3}}x^{-2}y^{-1}}\right)$ or			M10e	correct simplification of y term or reciprocal or
$2x^{2}y$ e.g. $\left(\frac{y}{0.5x^{-2}}\right)$ SCB2 for $\left(\frac{1}{2x^{2}y}\right)$ or $ax^{n}y^{m}$ with 2 of a = 2, n = 2, m = 1		$\left(\frac{2x^2y^{\frac{8}{3}}}{\frac{5}{y^{\frac{5}{3}}}}\right)$ oe				
			$2x^2y$		A10e	
				<u> </u>		

			B2 Points at end of intervals and joined with curve or line segments
12 a	correct graph	2	B2 Points at end of intervals and joined with curve or line segments
			If not B2 then B1 for 5 or 6 of their points from table plotted consistently within each interval at their correct heights and joined with smooth curve or line segments
b		2	M1 ft for a cf graph horizontal line or mark drawn at 40 or 40.5 or vertical line at correct place, ft their cf graph
	57 – 59		A1 ft from their cf graph
с		2	M1ft for reading from cf axis ft their graph from 90 on time axis or 72 ft
	8		A1ft
			Total 6 marks

13 a	0.00079	1	B1 cao
b		2	M1 for 20.15×10^9 or 20150000000
			or 2.015×10^n where $n \neq 10$
	2.015×10^{10}		A1 For 2×10^{10} or better
			Total 3 marks

						mm. Myr.	Nathscioud.com
14	9000 × 0.018 (= 162) or 9000 × 1.018 (=9162)		3	M1	or for $\frac{3 \times 1.8}{100} \times 9000$	M2 for 9000×1.018^3	rd.com
					(=486) or 9486		
	(9000 + "162)×0.018 (=164.916)			M1	for complete method		
	("9162" + "164.916")×0.018 (= 167.88) "9162" + "164.916" + "167.88"						
		9494.8(0)		A1	accept 9494.8 - 9495		
						Total 3 marks	

15	-4y = 5 - 3x		4	M1	isolates term in y
	y = 0.75x (+ c) or gradient of A = 0.75 oe			M1	
	gradient of $\mathbf{B} = \frac{3-7}{-1-4} \left(=\frac{4}{5}\right)$ oe			M1	or $y = 0.8x (+ c)$ oe
		No with correct figures		A1	eg. No gradient of $\mathbf{A} = 0.75$ but
					gradient of $\mathbf{B} = 0.8$ oe
					Total 4 marks

				Mu deals with fractions eg. finds common denominator (15 or a multiple of 15) or multiplics hu common multiple in a correct
16 a	e.g. $3(3x + 1) - 5(x - 4) = 2 \times 15$ or $\frac{3(3x+1)}{15} - \frac{5(x-4)}{15} = 2$ or $\frac{3(3x+1) - 5(x-4)}{15} = 2$		3	M1 deals with fractions eg. finds common denominator (15 or a multiple of 15) or multiplies by common multiple in a correct equation.
	e.g. $9x + 3 - 5x + 20 = 30$	1.75 oe		M1Expands brackets and multiplies by common denominator in a correct equationA1dep on M1
b	$\frac{t(3p+1) = 7 - 2p}{3pt + 2p} = 7 - t$		4	$\begin{array}{c c}\hline M1 & \text{multiplies by } 3p+1 & \text{must have brackets} \\\hline M1 & \text{isolates terms in } p \end{array}$
	p(3t+2) = 7-t	$p = \frac{7-t}{3t+2}$		M1 takes p out as a common factor A1 or $p = \frac{t-7}{-3t-2}$ oe with p as the subject
				Total 7 marks

17	e.g. $\frac{12}{3} = \frac{RX}{4}$ or $12 \times 4 = XR \times 3$ or $3x = 48$		3	M1 or $(2r - 3) \times 3 = 12 \times 4$
	$(XR =) 12 \times 4 \div 3 (=16)$			M1 or $2r - 3 = 12 \times 4 \div 3$ or $XR = 16$ or an answer of 19
		9.5		Aloe e.g. $\frac{19}{2}$
				Total 3 marks

			M1 e.g. $\frac{7p^{\frac{1}{2}}-p^2}{3}$
18 $ \frac{7\sqrt{p}-p^{2}}{p\sqrt{p}} \text{ or } \frac{7\sqrt{p}-p^{2}}{\sqrt{p^{3}}} \times \frac{\sqrt{p^{3}}}{\sqrt{p^{3}}} \text{ oe} $ $ \frac{7\sqrt{p}-p^{2}}{p\sqrt{p}} \times \frac{\sqrt{p}}{\sqrt{p}} \text{ or } \frac{7\sqrt{p}-p\sqrt{p}\sqrt{p}}{p\sqrt{p}} $ $ \frac{7\sqrt{p}\sqrt{p^{3}}-p^{2}\sqrt{p^{3}}}{p^{3}} \text{ oe} $	$\frac{7 - p\sqrt{p}}{p}$	3	$\frac{p^{\frac{1}{2}}}{M1}$ e.g. $\frac{7p^2 - p^{\frac{7}{2}}}{p^3}$ oe $\frac{A1}{for \frac{7 - p\sqrt{p}}{p} \text{ or } \frac{7}{p} - \sqrt{p} \text{ oe or}}{\frac{7 - p^{\frac{3}{2}}}{p} \text{ oe}}$
			Total 3 marks

				B1 B1
19 a		2	1	B1 Jud.
b		0.5 oe	1	B1
с	y(2-x) = 3 or x(2-y) = 3 oe		2	M1
		$\frac{2x-3}{x}$		A1 $\frac{3-2x}{-x}$ or $2-\frac{3}{x}$ must be in terms of x
d	$\frac{\frac{3}{2-\frac{2x+1}{3}} \text{ oe}}{\frac{2}{3}}$	9	2	M1 A1
		$\overline{5-2x}$		
				Total 6 marks

20 a			2	M1	for any 2 of $3x^2$ or $-8x$ or $+5$ differentiated correctly
		$3x^2 - 8x + 5$		A1	
b	$3x^2 - 8x + 5 = 1$		4	M1	ft from (a)
	$3x^2 - 8x + 4 = 0$			M1	ft rearrange ready to solve, ft as long as $ax^2 - bx + c$
	eg $(3x-2)(x-2) = 0$			M1	ft correct method to solve quadratic – if using formula, every term to be substituted correctly as long as $ax^2 - bx + c$
		$\frac{2}{3}, 2$		A1	cao dep on M2 Ignore any attempts to find y values
					Total 6 marks

				$\begin{array}{c c} & & & & & & \\ \hline & & & & \\ \hline & & \\ \hline & & & \\ \hline \\ \hline$
21	$(OB^{2} =) 12^{2} + 16^{2} - 2 \times 12 \times 16 \times \cos(60^{\circ})$		5	M1 M2 for
	$(OB =)\sqrt{208}$ or $4\sqrt{13}$ or 14.4 or $(OB^2) = 208$			
	$0.5 \times 12 \times 16 \times \sin(60^{\circ}) (= 83.1 \text{ or } 48\sqrt{3})$ or			M1 ft their 14.4 provided first M1
	$\frac{38}{260} \times \pi \times "14.4" \times "14.4"$ (=68.9) or			awarded.
	$\frac{1}{360} \times \pi \times 14.4 \times 14.4 (=68.9) \text{ or}$			
	$\frac{38}{360} \times \pi \times "208" \ (=68.9)$			
	360			
	$0.5 \times 12 \times 16 \times \sin(60^{\circ}) + \frac{38}{360} \times \pi \times "14.4" \times "14.4"$			M1 ft their 14.4 provided first M1
				awarded.
	(68.9+ 83.1)			
		152		A1 awrt 152
				Total 5 marks

				WWW. NYMAIL
22 $ \frac{\frac{4}{12} \times \frac{3}{11} \times \frac{4}{10} (= \frac{48}{1320} = \frac{2}{55}) \text{ oe}}{3 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10} \text{ or } 2 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10}}{3 \times 2 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10} \text{ oe or } 3 \times 3 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10}}{3 \times 3 \times 2 \times \frac{4}{12} \times \frac{3}{11} \times \frac{4}{10} \text{ oe}} $	-	5	M1 M1 M1 M1	Multiply $\frac{4}{12} \times \frac{3}{11} \times \frac{8}{10} (= \frac{96}{1320} = \frac{4}{55})$ oe M1 for $3 \times \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10}$ oe M1 for $3 \times \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10}$ oe
	$\frac{36}{55}$		A1 oe eg.	$\frac{M1 \text{ for } 3 \times 3 \times \frac{4}{12} \times \frac{5}{11} \times \frac{6}{10} \text{ oe}}{\frac{864}{1320}} (0.65(45454))$
Alternative using 1 – (all different + all the same)				
$\frac{4}{12} \times \frac{4}{11} \times \frac{4}{10} \text{ or } \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10}$		5	M1	
$\frac{4}{12} \times \frac{4}{11} \times \frac{4}{10} \times 6 \text{ or } \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times 3$			M1	
$\frac{4}{12} \times \frac{4}{11} \times \frac{4}{10} \times 6 \text{ and } \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times 3$			M1	
$1 - [(\frac{4}{12} \times \frac{4}{11} \times \frac{4}{10} \times 6) + (\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} \times 3)]$			M1	
	$\frac{36}{55}$		A1 oe eg.	$\frac{864}{1320} (0.65(45454))$
				Total 5 marks

						WMM. My Mains Cloud. Com
	SC: With replacement (maximum marks M3)					Total 5 marks
22	$3 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12} (= \frac{192}{1728} = \frac{1}{9}) \text{ or } 2 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12} (= \frac{128}{1728} = \frac{2}{27})$	3	N	M 1	or $\frac{4}{12} \times \frac{4}{12} \times \frac{8}{12}$	yn
	$3 \times 2 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12}$ oe or $3 \times 3 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12}$ oe		N	M1	or $3 \times \frac{4}{12} \times \frac{4}{12} \times \frac{8}{12}$	
	$3 \times 3 \times 2 \times \frac{4}{12} \times \frac{4}{12} \times \frac{4}{12} \text{ oe}$		N	M1	M1 for $3 \times 3 \times \frac{4}{12} \times \frac{4}{12} \times \frac{8}{12}$	

				42	www.mymathscloud.com
23 a	$\overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{AD} \text{ or } -\mathbf{c} - \mathbf{b} + 3\mathbf{c}$	2 c – b	2	M1 A1	YOUG.COM
b	$\overrightarrow{BP} = \overrightarrow{BA} + \frac{2}{3}\overrightarrow{AC} \text{ or } \overrightarrow{PD} = \frac{1}{3}\overrightarrow{AC} + \overrightarrow{CD}$	-	4	$\begin{array}{c c} M1 \text{ft} & Ft \text{ their } \overrightarrow{CD} \\ \hline M1 \text{ft} & \end{array}$	
	$\overrightarrow{BP} = -\mathbf{b} + \frac{2}{3} (\mathbf{b} + \mathbf{c}) \left(=\frac{2}{3}\mathbf{c} - \frac{1}{3}\mathbf{b}\right) \mathbf{or}$ $\overrightarrow{PD} = \frac{1}{3}(\mathbf{b} + \mathbf{c}) + 2\mathbf{c} - \mathbf{b} \left(=\frac{7}{3}\mathbf{c} - \frac{2}{3}\mathbf{b}\right)$				
	$\overline{BP} = -\mathbf{b} + \frac{2}{3} (\mathbf{b} + \mathbf{c}) \left(=\frac{2}{3}\mathbf{c} - \frac{1}{3}\mathbf{b}\right) \mathbf{AND}$	-		M1 or $\overrightarrow{BP} = \frac{1}{3}(2\mathbf{c} - \mathbf{b})$ and	-
	$\overrightarrow{PD} = \frac{1}{3}(\mathbf{b} + \mathbf{c}) + 2\mathbf{c} - \mathbf{b} \left(=\frac{7}{3}\mathbf{c} - \frac{2}{3}\mathbf{b}\right)$ OR			$\overrightarrow{CD} = 2\mathbf{c} - \mathbf{b}$	
	$\overrightarrow{BP} = -\mathbf{b} + \frac{2}{3} (\mathbf{b} + \mathbf{c}) \left(=\frac{2}{3}\mathbf{c} - \frac{1}{3}\mathbf{b}\right) \mathbf{AND}$ $\overrightarrow{BD} = -\mathbf{b} + 3\mathbf{c}$				
	OR $\overrightarrow{PD} = \frac{1}{3}(\mathbf{b} + \mathbf{c}) + 2\mathbf{c} - \mathbf{b} (=\frac{7}{3}\mathbf{c} - \frac{2}{3}\mathbf{b})$ AND				
	$\overrightarrow{BD} = -\mathbf{b} + 3\mathbf{c}$				

	ww	M. T.Y. TANKING COLUMN COM
No with correct appropriate vectors and reason	$\overrightarrow{CD} = 2\mathbf{c} - \mathbf{b}$ are parallel and therefore not in a straight line OR Correct simplified vectors for two of <i>BP</i> , <i>BD</i> , <i>PD</i> with explanation that vectors are not a multiple of each other	'S.COM
	Total 6 marks	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

www.mynathscloud.com